If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+20x=1925
We move all terms to the left:
x^2+20x-(1925)=0
a = 1; b = 20; c = -1925;
Δ = b2-4ac
Δ = 202-4·1·(-1925)
Δ = 8100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{8100}=90$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-90}{2*1}=\frac{-110}{2} =-55 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+90}{2*1}=\frac{70}{2} =35 $
| (10x-1)+(8x+15)=180 | | x-5=11= | | X/x5=-3 | | 7(1/8)x-3/4=20 | | 1,2(x+1)-3=9-(30,3x) | | 5n-14=1 | | 1.6x-17=23 | | n(n-1)=100 | | 12.18+0.08x=12.68-0.07x | | 9n-3n=6(2n-1) | | 3x+4.5=150 | | a+2a=3,6 | | 6(x-2)+x=10x-30 | | 600=30x+150 | | 15.09+0.12x=15.84-0.15x | | y4×6×2-7=7 | | 8(7-z)=32 | | X-6x+10x=20 | | 1+8s=57 | | x+(1/2x+3)=21 | | 6(v-1)=7v+1-4(-2v-2) | | 2x+68=4x-30 | | x2-19x+28=0 | | 2y/6y-5y+3*4-4=0 | | 28-6x=4x+58 | | -3(v+5)=7v-9+3(2v+4) | | 8y+4y=15-9 | | -2(6w-3)+8w=4(w+2) | | -3(-6x+8)-2x=2(x-8)-4 | | 2y+(4/6y)+3*4-5y=0 | | 2y+4/6y+3*4-5y=0 | | T(n)=-3n-3 |